<% - =
l"’ QOpening Up the Natural History Heritage ICT
UP. for Europeana

cip

D20 - DELIVERABLE 6.4.2

Project Acronym: OpenUp!
Grant Agreement No: 270890

Project Title: Opening up the Natural History Heritage for Europeana

Productive system for caching environment
D20 — Deliverable 6.4.2

Revision: 5a
Authors:

Wolfgang Koller NHMW
Heimo Rainer NHMW

Project co-funded by the European Commission within the ICT Policy Support Programme

Dissemination Level

P Public X

C Confidential, only for members of the consortium and the Commission Services

<«

upP

R
!

QOpening Up the Natural History Heritage
for Europeana

cip

0 REVISION AND DISTRIBUTION HISTORY AND STATEMENT OF

ORIGINALITY

Revision History

Revision Date Author Organisation Description
1 2013-08-06 |Wolfgang Koller NHMW Initial setup of document
2 2013-08-07 |Wolfgang Koller NHMW Details on caching layers functionality
3 2013-08-09 |Wolfgang Koller NHMW Incorporating feedback from Heimo
Rainer
4 2013-08-14 |Wolfgang Koller NHMW, Extending document based on feedback
™G from TMG
5 2013-08-20 |[Wolfgang Koller NHMW Final amendments
5a 2013-08-22 |Coordination Team BGBM Minor editing

(A. Michel,
P. Bottinger)

Statement of Originality

This deliverable contains original unpublished work except where clearly indicated otherwise.
Acknowledgement of previously published material and of the work of others has been made

through appropriate citation, quotation or both.

Distribution

Recipient Date Version Accepted YES/NO
TMG 2013-08-09 3 NO
T™MG 2013-08-14 4 YES
Work Package Leader (Heimo Rainer, WP6) 2013-08-07 2 YES
Project Coordinator (W. Berendsohn, BGBM) 2013-08-22 5a YES

p.1

o, 2
< ‘% QOpening Up the Natural History Heritage 2” |CT
UP! for Europeana de : =
Table of Contents
0 REVISION AND DISTRIBUTION HISTORY AND STATEMENT OF ORIGINALITY ...ccccviiiieniinnninnsnnnnninncnnnes 1
N © V1| 3
2 SERVICE CACHE.......coeeeiieeiiiieeeiitree et e e e s e s e e s e s s s s e a e st e s e e s st e naas st enasssssennssssnennsssrennnsss 4
3 SUB-SERVICE CACHE ...ttt e e s e e e s e sa e s e s e s e s e s s s e s e s s s e e nas st e e nassssennsssssennnns 5
3.1 LY A0 Tol g T=Te |2 (=T o Yo Yo 1 RSP 5
3.2 oLl O 1ol o [Te | 2 U=T oo o Y ISRt 6
4 LIST OF FIGURES ...cuiiiiiitiiiuiiitiieiiaiiieiieeiiseiiaitesieesiassiassssssssstosstassssssssstssssassssssssssssssasssassssssasssasssasssnssans 7
5 LIST OF REFERENCESieuiituiiiinniinniiieniiiiaieiniiisisissieisssisssissstsssstsssstsssssssssssssssssssssssssssnsssssssssnssssnes 7

p.2

Qp,

< ;%' Opening Up the Natural History Heritage Z ’ ICTps<
UP. for Europeana

\ll i

cip P

1 OVERVIEW

The common names web service® provides an interface for retrieving common names for a given scientific
name (for detailed information on the interface and the web service please consult D17-D6.2.4%). This
process is heavily used during the enrichment phase of the content for Europeana (as outlined in Figure 1).

Provider Data

europeana

Common Names Webservice think culture

Figure 1: Common names web service utilization

In order to increase the performance of the common names web service, two caching layers are
implemented. The first one being a service-level caching layer which is used to directly cache request and
responses to the actual common names web service. If an incoming request was answered before, the
response will be taken from a database cache and returned immediately (the request is therefore not
forwarded to all available sources).

The second caching layer is part of the sub-service layer. It caches all requests to sub-services which are
queried from the common names web service. In addition it takes care of timing out the cache if responses
are too old.

While the first layer reduces the overall load, the second layer especially ensures that other services are not
overloaded by the same requests from our service. Together with the GNA nameParser (which maps
scientific names in different variants to a canonical version) this heavily reduces the load to external sources.

! http://openup.nhm-wien.ac.at/commonNames/

2 D17-D6.2.4 Productive system for harvesting and parsing reference information

p.3

o, 2
A t%. . h | Hi .] <
UPI QOpening Up the Natural History Heritage ICT

for Europeana A
cip

2 SERVICE CACHE

The service level cache is built on application level. As outlined in D17-D6.2.4 the service implementation is
based on the Yii-Framework®. It offers an output caching facility which can be easily configured. Based on
this the response to requests with the same “query” or “queries” parameter to the common names web
service are fetched from a database cache instead of forwarded to all available sources.

request processed before?

(COutputCache)

-

No

lYES
Y

Fetch previous
response result from
Database
(CDbCache)

process request

cache result
(CDbCache)

Figure 2: Processing of service caching layer

This yields a high performance gain since the request is not forwarded anymore, but instead the final output
is returned immediately.

This works as outlined in Figure 22. Before a request is actually processed the COutputCache facility checks
for a previously processed request which has the same “query” and “queries” parameters. If a previously
processed result is found, it is fetched from the database using the CDbCache utility. If not, it is processed as
usual and then stored for future calls. COutputCache also takes care of the lifetime of the cache, which is
configured to be valid for 24 hours.

® http://www.yiiframework.com/

p.4

ng‘% _
UP'IP Opening Up the Natural History Heritage 2” ICT

for Europeana

e

cip i

3 SUB-SERVICE CACHE

The sub service cache layer is based on a database cache as well. Since most of the web services use a
different protocol, the raw response data is cached in a database in order to avoid duplicate calls to sub-
services. In order to simplify the setup of new services, base classes were introduced to handle JSON-RPC,
SOAP and REST services (which covers all cases encountered so far). As shown in Figure 33, all specialized
web service classes extend from the same base class (WSComponent). It provides the actual service cache
layer functionality.

WSComponent

A

CachedJSONRPCClient CachedSoapClient CachedRESTClient

Figure 3: Sub-service cache layer structure

3.1 setCachedResponse

The actual caching functions are provided by the common WSComponent base class. It provides simple
methods to check for a previously cached response and to save a new response.

setCachedResponse » Shal(serialize(query))
serialize(response)

overwrite old cache -
<——_ QOld response? >
Yes P -
B ~ —
-~

create new cache | No

Figure 4: Response caching

p.5

o 3
ﬂ&

Upf‘lﬁ' Opening Up the Natural History Heritage 2” |CT

for Europeana A
cip

As outlined in Figure 44, responses are cached in serialized form. This is required due to different data
structures of the responses (e.g. array, objects, etc.) which cannot be handled by the database directly, but
work flawlessly in a serialized form.

The query is stored as the shal hash of the serialized query. The hash is used to speed up searches for the
qguery when looking up a cached response. At this point no collisions were found for the shal hash algorithm,
which means all queries yield a unique hash for lookup.

3.2 getCachedResponse

Receiving a previously cached response works in a similar way to storing it. Figure 55 shows the processing
on an incoming cache lookup request. The query is again serialized and the shal hash is calculated. It is then
used to look up a previously stored response. If none is found, a NULL value is returned. If an entry is found,
it is checked against the timeout property (which is specified on a sub-service basis). If the cache entry is
outdated, a NULL value is returned. If not, the cached response is unserialized and returned.

getCachedResponse » shal(serialize(query))
PN PNy
/// \‘\\ T T
< outdated /><——<Cach ed response?>-»
 Yes =7 >
No No
Yes
unserialize(response) NULL

Figure 5: Receiving previously cached response

This approach is completely transparent for all underlying service classes, thus a lookup in the cache and an
actual call of the web service yield exactly the same results.

p.6

<«

for Europeana A
cip

4 LIST OF FIGURES

Figure 1: Common names Web Service UtiliZatioN..........oocuieiieiiie et e e e
Figure 2: Processing of SErvice CaChiNg IaYeIviiiiiiiiciie ettt e e e e be e e e s araee e eeaaes
Figure 3: SUb-Service Cache layer SErUCTUIE......c.uvii it e e s e e e s bae e e e sabeee e enbeas
FIgUIe 4: RESPONSE CACNINE .eeiiiiiiiiiiiie ettt est e ettt e e ettt e e e st e e e sea e e e e sbeeeesanteeeesastaeessseeeesansaeaesasseeessnssenens

Figure 5: Receiving previously CaChed reSPONSEc.uiiiiiiiieiiieee ettt e e e e e bee e e s nree e e s baee e enanes

5 LIST OF REFERENCES

Yii Framework, http://www.yiiframework.com/

GNA nameParser, https://rubygems.org/gems/biodiversity19

UP;%' QOpening Up the Natural History Heritage 2”

p.7

